Compactification of a set of matrices with convergent infinite products
نویسنده
چکیده
We generalize and unify some aspects of the work of I. Daubechies, J.C. Lagarias [Linear Algebra Appl. 162 (1992) 227–263] on a set R of matrices with right-convergent-products (RCPs). We show that most properties of an RCP set R pass on to its compactification R (i.e., its closure in the matrix space). Results on finite RCP sets generally hold for compact RCP sets, among which is the existence of the König chain, an important tool for analyzing RCP sets. © 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A60; 40A20; 15A18
منابع مشابه
Generated topology on infinite sets by ultrafilters
Let $X$ be an infinite set, equipped with a topology $tau$. In this paper we studied the relationship between $tau$, and ultrafilters on $X$. We can discovered, among other thing, some relations of the Robinson's compactness theorem, continuity and the separation axioms. It is important also, aspects of communication between mathematical concepts.
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملInfinite products and paracontracting matrices
In [Linear Algebra Appl., 161:227{263, 1992] the LCP-property of a nite set of square complex matrices was introduced and studied. A set is an LCP-set if all left in nite products formed from matrices in are convergent. It was shown earlier in [Linear Algebra Appl., 130:65{82, 1990] that a set paracontracting with respect to a xed norm is an LCP-set. Here a converse statement is proved: If is a...
متن کاملExact Lyapunov Exponent for Infinite Products of Random Matrices
In this work, we give a rigorous explicit formula for the Lyapunov exponent for some binary infinite products of random 2 × 2 real matrices. All these products are constructed using only two types of matrices, A and B, which are chosen according to a stochastic process. The matrix A is singular, namely its determinant is zero. This formula is derived by using a particular decomposition for the ...
متن کاملInfinite Partition Regular Matrices , II – Extending the Finite Results
A finite or infinite matrix A is image partition regular provided that whenever N is finitely colored, there must be some ~x with entries from N such that all entries of A~x are in the same color class. Using the algebraic structure of the StoneČech compactification βN of N, along with a good deal of elementary combinatorics, we investigate the degree to which the known characterizations of fin...
متن کامل